Caesar: A Deductive Verifier for Probabilistic Programs

Dafny 2024

Philipp Schröer¹, Kevin Batz¹, Benjamin Kaminski², Joost-Pieter Katoen¹, Christoph Matheja³

RWTH Aachen University¹, Saarland University and University College London², Technical University of Denmark³

The geometric loop program C_{geo} :

```
c := 0; run := true;
while (run) {
    {run := false } [0.5] { c := c + 1 }
}
```

The geometric loop program C_{geo} :

```
c := 0; run := true;
while (run) {
    {run := false } [0.5] { c := c + 1 }
}
```

The geometric loop program C_{geo} :

```
c := 0; run := true;
while (run) {
    {run := false } [0.5] { c := c + 1 }
}
```

1. Probability of final states terminating with c = 1?

The *geometric loop* program C_{geo} :

```
c := 0; run := true;
while (run) {
    {run := false } [0.5] { c := c + 1 }
}
```

- 1. Probability of final states terminating with c = 1?

 0.25
- 2. Expected counter c after termination?

```
0.5 \cdot 0 + 0.25 \cdot 1 + 0.125 \cdot 2 + \dots = 1.0
```

The *geometric loop* program C_{geo} :

```
c := 0; run := true;
while (run) {
    {run := false } [0.5] { c := c + 1 }
}
```

- 1. Probability of final states terminating with c = 1?

 0.25
- 2. Expected counter *c* after termination? $0.5 \cdot 0 + 0.25 \cdot 1 + 0.125 \cdot 2 + ... = 1.0$
- 3. Probability of termination?1.0 ("almost-surely terminating")

The geometric loop program C_{geo} :

```
c := 0; run := true;
while (run) {
    {run := false } [0.5] { c := c + 1 }
}
```

- 1. Probability of final states terminating with c = 1?

 0.25
- 2. Expected counter *c* after termination? $0.5 \cdot 0 + 0.25 \cdot 1 + 0.125 \cdot 2 + ... = 1.0$
- 3. Probability of termination?1.0 ("almost-surely terminating")
- 4. Expected runtime?
 - 2.0 ("positively almost-surely terminating")

lower and upper bounds on expected values (amortized) expected run-times almost-sure termination positive almost-sure termination

lower and upper bounds on expected values (amortized) expected run-times almost-sure termination positive almost-sure termination probabilistic sensitivity conditional expected values expected resources

Park induction k-induction martingales

lower and upper bounds on expected values (amortized) expected run-times almost-sure termination positive almost-sure termination probabilistic sensitivity conditional expected values expected resources

Park induction k-induction martingales

Our Motivation: How to automate verification of the above?

lower and upper bounds on expected values ... more?

(amortized) expected run-times almost-sure termination
positive almost-sure termination probabilistic sensitivity
conditional expected values expected resources

Park induction k-induction martingales ... more?

Our Motivation: How to automate verification of the above?

How to make the automation extensible?

lower and upper bounds on expected values ... more?

(amortized) expected run-times almost-sure termination
positive almost-sure termination probabilistic sensitivity
conditional expected values expected resources

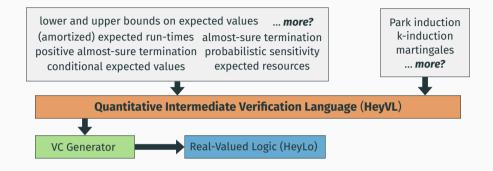
Park induction k-induction martingales ... *more?*

Our Motivation: How to automate verification of the above? How to make the automation extensible?

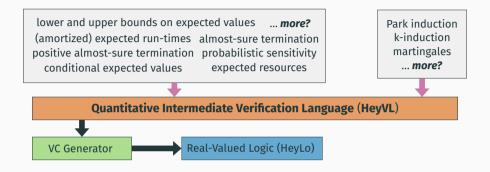
⇒ An intermediate language for the verification of probabilistic programs. "Build the probabilistic version of *Boogie/Viper*"

We present:

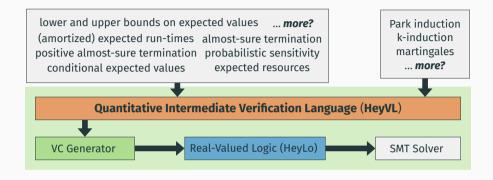
A novel intermediate language to verify probabilistic programs (HeyVL),



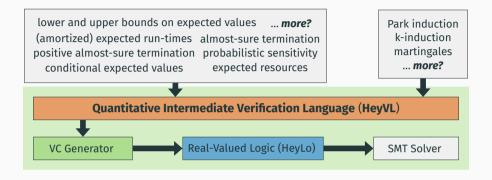
- A novel intermediate language to verify probabilistic programs (HeyVL),
- A new assertion language for quantities (HeyLo),



- A novel intermediate language to verify probabilistic programs (HeyVL),
- A new assertion language for quantities (HeyLo),
- Encodings of properties and proof rules into HeyVL,



- A novel intermediate language to verify probabilistic programs (HeyVL),
- A new assertion language for quantities (HeyLo),
- Encodings of properties and proof rules into HeyVL,
- and an implementation called Caesar.



- A novel intermediate language to verify probabilistic programs (HeyVL),
- A new assertion language for quantities (HeyLo),
- Encodings of properties and proof rules into HeyVL,
- and an implementation called Caesar.

Predicates

Specification: $\{P\} S \{\downarrow Q\}$

 ${P,Q\colon\Sigma\to\,\mathbb{B}}$

Predicates

Specification: $\{P\} S \{\downarrow Q\}$

 $P,Q:\Sigma\to\mathbb{B}$

Meaning: P is a subset of

the states terminating in Q.

Predicates

Specification: $\{P\} S \{\downarrow Q\}$

 $P,Q:\Sigma\to\mathbb{B}$

Meaning: P is a subset of

the states terminating in Q.

Deductively: $P \subseteq \operatorname{wp}_{\mathbb{P}}[S](Q)$

"weakest preconditions"

Predicates

Specification: $\{P\} S \{\downarrow Q\}$

 $P,Q:\Sigma\to\mathbb{B}$

Meaning: P is a subset of

the states terminating in Q.

Deductively: $P \subseteq \operatorname{wp}_{\mathbb{P}}[S](Q)$

"weakest preconditions"

IVL: assume P; encode[S]; assert Q

Predicates

Specification:
$$\{P\} S \{\downarrow Q\}$$

 $P, O: \Sigma \to \mathbb{B}$

the states terminating in
$$Q$$
.

Deductively:
$$P \subseteq wp_{\mathbb{D}}[S](Q)$$

"weakest preconditions"

IVL: assume P; encode[S]; assert Q

Probabilistic Programs

Expectations

$$\{f\}_{\leq} S \{\downarrow g\}$$

 $f,g: \Sigma \to \mathbb{R}_{>0}^{\infty}$

f is a *lower bound* to the expected value of g.

Classical	Programs
-----------	----------

Predicates

Specification:
$$\{P\} S \{\downarrow Q\}$$

$$P,Q\colon\Sigma\to\,\mathbb{B}$$

the states terminating in Q.

Deductively:
$$P \subseteq wp_{\mathbb{D}}[S](Q)$$

"weakest preconditions"

IVL: assume P; encode[S]; assert Q

Probabilistic Programs

Expectations

$$\{f\}_{\leq} S \{\downarrow g\}$$

 $f,g: \Sigma \to \mathbb{R}_{>0}^{\infty}$

f is a lower bound to the expected value of g.

$$f \leq \mathsf{wp}_{\scriptscriptstyle{\mathbb{F}}}[S](g)$$

"weakest preexpectations"

Classical	Programs
-----------	----------

Predicates

$$\{P\} S \{\downarrow Q\}$$

$$P, Q: \Sigma \to \mathbb{B}$$

Specification:

the states terminating in Q.

Deductively:
$$P \subseteq \operatorname{wp}_{\mathbb{P}}[S](Q)$$

"weakest preconditions"

IVL: assume P; encode[S]; assert Q

Probabilistic Programs

Expectations

$$\{f\}_{\leq} S\{\downarrow g\}$$

$$f,g:\Sigma\to\mathbb{R}^\infty_{\geq 0}$$

f is a lower bound to

the expected value of g.

$$f \leq \operatorname{wp}_{\mathbb{F}}[S](g)$$

"weakest preexpectations"

assume f; encode[S]; assert g

HeyVL

(Lower Bounds)

Assert semantics with minimum:

$$[assert f](g) = f \sqcap g$$

$$[assert f](g) = f \sqcap g$$

Assume semantics?

$$[assume f](g) = f \rightarrow g = ???$$

$$[assert f](g) = f \sqcap g$$

Assume semantics?

$$[assume f](g) = f \rightarrow g = ???$$

Properties:

1. Heyting algebra:

$$f \leq q \rightarrow h$$

$$[assert f](g) = f \sqcap g$$

Assume semantics?

$$[assume f](g) = f \rightarrow g = ???$$

Properties:

1. Heyting algebra:

$$f \le g \to h$$
 iff $f \sqcap g \le h$

$$[assert f](g) = f \sqcap g$$

Assume semantics?

$$[assume f](g) = f \rightarrow g = ???$$

Properties:

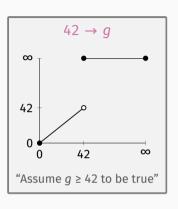
- 1. Heyting algebra:
- $f \le q \to h$ iff $f \sqcap q \le h$

$$f \le q$$
 iff $f \to q \equiv \infty$

$$[assert f](g) = f \sqcap g$$

Assume semantics:

$$[assume f](g) = f \rightarrow g = ???$$



Properties:

1. Heyting algebra:

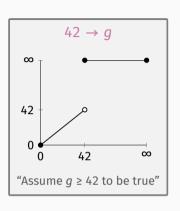
$$f \le g \to h$$
 iff $f \sqcap g \le h$

$$f \leq g \quad \text{iff} \quad f \to g \equiv \infty$$

$$[assert f](g) = f \sqcap g$$

Assume semantics:

$$[assume f](g) = f \rightarrow g = \lambda \sigma. \begin{cases} \infty, & \text{if } f(\sigma) \leq g(\sigma) \\ g(\sigma), & \text{else} \end{cases}$$



Properties:

1. Heyting algebra:

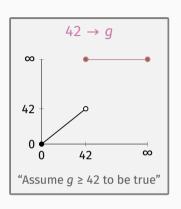
$$f \leq g \rightarrow h$$
 iff $f \sqcap g \leq h$

$$f \le g$$
 iff $f \to g \equiv \infty$

$$[assert f](g) = f \sqcap g$$

Assume semantics:

$$[assume f](g) = f \rightarrow g = \lambda \sigma. \begin{cases} \infty, & \text{if } f(\sigma) \leq g(\sigma) \\ g(\sigma), & \text{else} \end{cases}$$



Properties:

1. Heyting algebra:

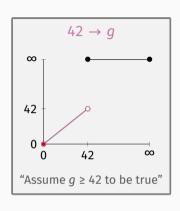
$$f \leq g \rightarrow h$$
 iff $f \sqcap g \leq h$

$$f \le g$$
 iff $f \to g \equiv \infty$

$$[assert f](g) = f \sqcap g$$

Assume semantics:

$$[assume f](g) = f \rightarrow g = \lambda \sigma. \begin{cases} \infty, & \text{if } f(\sigma) \leq g(\sigma) \\ g(\sigma), & \text{else} \end{cases}$$



Properties:

1. Heyting algebra:

$$f \leq g \rightarrow h$$
 iff $f \sqcap g \leq h$

$$f \le g$$
 iff $f \to g \equiv \infty$

```
assume c + 0.5
{ run := false } [0.5] { c := c + 1 }
assert c
```

(Lower Bounds)

A HeyVL program S verifies iff $[S](\infty) \equiv \infty$.

```
assume c + 0.5
```

```
{ run := false } [0.5] { c := c + 1 }
```

```
assert c
//∞
```

assume c + 0.5

A HeyVL program S verifies iff $[S](\infty) \equiv \infty$.

```
{run := false}[0.5]{c := c+1}

// c \pi \infty

assert c

// \infty
```

assume c + 0.5

```
{run:= false}[0.5]{c:= c+1}
// c
// c □ ∞
assert c
// ∞
```

```
assume c + 0.5

// 0.5 \cdot c + 0.5 \cdot (c + 1)

{ run := false } [0.5] { c := c + 1 }

// c

// c \sqcap \infty

assert c

// \infty
```

```
assume c + 0.5

// c + 0.5

// 0.5 \cdot c + 0.5 \cdot (c + 1)

{run := false}[0.5]{c := c + 1}

// c

// c \sqcap \infty

assert c

// \infty
```

```
//(c + 0.5) \rightarrow (c + 0.5)
assume c + 0.5
//c + 0.5
// 0.5 \cdot c + 0.5 \cdot (c + 1)
{run := false}[0.5]{c := c + 1}
// c
//сп∞
assert c
// ∞
```

A HeyVL program S verifies iff $[S](\infty) = \infty$.

```
// ∞
//(c + 0.5) \rightarrow (c + 0.5)
assume c + 0.5
//c + 0.5
// 0.5 \cdot c + 0.5 \cdot (c + 1)
\{run := false\}[0.5]\{c := c + 1\}
// c
//сп∞
assert c
// ∞
```

The HeyVL program verifies, therefore

$$\{c + 0.5\}_{<} S' \{c\}$$

where $S' = \{ run := false \} [0.5] \{ c := c + 1 \}.$

HeyVL: Verification Statements

HeyVL

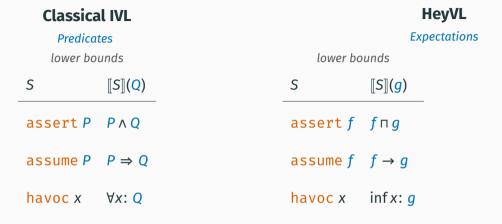
Expectations

lower bounds

S
$$[S](g)$$
assert $f \cap g$
assume $f \cap g$
havoc $f \cap g$

Omitted: validate, reward, branching

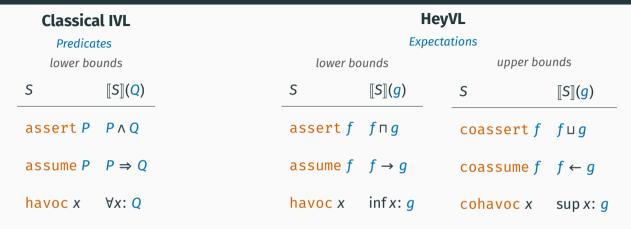
HeyVL: Verification Statements



Omitted: validate, reward, branching

• **HeyVL** generalizes classical IVLs.

HeyVL: Verification Statements



Omitted: validate, reward, branching

- **HeyVL** generalizes classical IVLs.
- **HeyVL** has dual verification statements for *upper bounds reasoning*.

Case Studies

More than 40 examples:

- with 12 proof rules for loops,
- · lower and upper bounds,
- procedures with recursion,
- · user-defined data structures.

Case Studies

More than 40 examples:

- with 12 proof rules for loops,
- · lower and upper bounds,
- procedures with recursion,
- · user-defined data structures.

Problem	Verification Technique	Source
LPROB	wlp + Park induction wlp + latticed <i>k</i> -induction	McIver and Morgan [2005] (new?)
UPROB	wlp + ω -invariants	Kaminski [2019]
LEXP	wp + ω -invariants wp + Optional Stopping Theorem	Kaminski [2019] Hark et al. [2019]
UEXP	wp + Park induction wp + latticed <i>k</i> -induction	McIver and Morgan [2005] Batz et al. [2021]
CEXP LERT UERT	conditional wp ert calculus + ω-invariants ert calculus + UEXP rules	Olmedo et al. [2018] Kaminski et al. [2016] Kaminski et al. [2016]
AST PAST	parametric super-martingale rule program analysis with martingales	McIver et al. [2018] Chakarov and Sankaranarayanan [2013]
???	more proof rules	you?

A Proof Rule for Loops

To reason about while (b) $\{S\}$ loops, we can use user-provided *invariants*. (Let \vec{x} be the modified variables in the loop.)

To reason about while (b) $\{S\}$ loops, we can use user-provided *invariants*. (Let \vec{x} be the modified variables in the loop.)

Classical IVL

Predicates

Let $I \in \mathbb{P}$ be an invariant candidate.

```
assert /
havoc x
assume /
if (b) {
  encode[S]
  assert /; assume false
}
```

To reason about while (b) $\{S\}$ loops, we can use user-provided *invariants*. (Let \vec{x} be the modified variables in the loop.)

Classical IVL

Predicates

Let $I \in \mathbb{P}$ be an invariant candidate.

```
assert /
havoc x
assume /
if (b) {
  encode[S]
  assert /; assume false
}
```

HeyVL

Expectations

Let $I \in \mathbb{E}$ be an invariant candidate.

```
assert /
havoc x
validate; assume /
if (b) {
  encode[S]
  assert /; assume 0
}
```

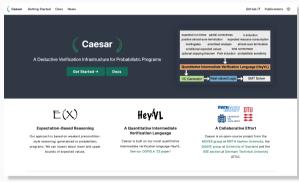
Our Tool Caesar - www.caesarverifier.org

In our OOPSLA '23 paper:

- HeyVL: An intermediate language to verify probabilistic programs,
- HeyLo: An assertion language to reason about quantities,
- Case studies of HeyVL encodings.

Online:

- The verifier Caesar
 - written in Rust, open source
- Language documentation
- Extended version of the paper



www.caesarverifier.org